91论坛
数学大讲坛第七期
第六十七讲——清华大学郭玉霞教授学术报告
题目: Multiple Boundary Peak Solution for Critical Hamiltonian System with Neumann boundary
时间:2025年12月25日(星期四) 上午10:30-12:00
地点:腾讯会议(会议ID:956-519-889)
报告人:郭玉霞 教授
摘要:We consider the following elliptic system with Neumann boundary:
\begin{equation*}
\begin{cases}
-\Delta u + \mu u=v^p,\;\;\; &\hbox{in } \Omega,\\
-\Delta v + \mu v=u^q,\;\;\; &\hbox{in } \Omega,\\
\frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = 0, &\hbox{on } \partial\Omega,\\
u>0,v>0, &\hbox{in } \Omega,
\end{cases}
\end{equation*}
where $\Omega \subset \R^N$ is a smooth bounded domain, $\mu$ is a positive constant and $(p,q)$ lies in the critical hyperbola:
$$
\dfrac{1}{p+1} + \dfrac{1}{q+1} =\dfrac{N-2}{N}.
$$
By using the Lyapunov-Schmidt reduction technique, we establish the existence of infinitely many solutions to above system. These solutions have multiple peaks that are located on the boundary $\partial \Omega$. Our results show that the geometry of the boundary $\partial\Omega,$ especially its mean curvature, plays a crucial role on the existence and the behaviour of the solutions to the problem.